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I n  the first part of this paper we introduce a path-integral formalism for the internal- 
wave field of the ocean. The intent is to show that this type of formalism may be useful 
in suggesting improvements to current calculations, as it provides a framework for 
applying a wide variety of approximations that have been and are currently being 
developed in other areas of physics. We demonstrate the method by deriving equations 
for a self-consistent field approach (afso known as the direct-interaction approxi- 
mation). The experience in other areas of physics is that the self-consistent field 
approximation is more reliable than lowest-order perturbation theory. The end result 
of the DIA is the determination of an effective linear model for the description of 
internal waves in the deep-ocean environment. I n  the second part of the paper we 
obtain Hasselmann’s source function by a prescribed limiting process and are able to  
indicate possible improvements in related calculations by comparing the limiting 
assumptions with numerically computed values. 

1. Introduction 
I n  the past two decades the study of the transfer of energy in the internal-wave field 

via three-wave (nonlinear) interactions has become an area of active research. The 
possibility of three-wave resonant interactions was first mentioned by Phillips (1 977). 
Subsequently a Boltzmann-like equation giving energy transfer rates in the Resonant- 
Interaction Approximation (RIA) was obtained by Hasselmann (1966, 1967) using 
multiple-time-scale methods. Inherent in his calculation was the assumption that 
transfer times were long compared with typical oscillation periods, a reasonable 
assumption given the widespread belief that internal-wave interactions were weak. 
Later synthesis of an analytic form for the internal-wave spectrum by Garret’t & 
Munk (1972, 1975) raised hopes that results of numerical calculations using Hassel- 
mann’s transfer equation might contain some measure of reality. Unfortunately, 
subsequent calculations by Olbers (1976), McComas (1977) and Pomphrey, Meiss Rs 
Watson (1980) predict,ed very short interaction times in a rat,her large region of the 
spectrum, so that the results were internally inconsistent. What was needed, then, was 
a systematic way to relax the strict assumptions inherent in the derivation of 
Hasselmann. The primary purpose of this paper is to describe a formalism that might 
very well prove useful to that end. 

I n  recent years new methods have been developed for analysing classical random 
nonlinear systems which partially owe their existence to analogous methods developed 
earlier for quantum many-body physics and particle physics. In  the classical regime 
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most of the emphasis has been on critical dynamics and fully developed turbulence. 
We propose to formulate the dynamics of both internal waves and surface waves using 
these methods. 

We should emphasize a t  the out,set that  we make no claim that the formalism 
developed herein provides a complete picture of the very complicated dynamics of 
internal waves. Rather, our interest is in demonstrating that the formalism provides 
a much more general framework in which to study internal waves than do the earlier 
schemes. In  fact the reason for mentioning surface waves a t  all is to demonstrate that  
the formalism is easily generalized from that obtained for the simple three-wave 
interacting system used to  model internal waves. It is in part this flexibility that makes 
this method powerful. 

The aim of our program will be to calculate the linear response functions (Green’s 
functions) and the two-time correlation functions. The ocean will be assumed to be a 
stationary random system. The time-development of perturbations to  the wave field 
is described by the linear response functions. 

I n  the theory of turbulence there is a long history of attempts a t  setting up such a 
formalism. The early work of Kraichnan (1959) and Wyld (1961) was followed by a 
1973 paper by Martin, Siggia & Rose (1973) (henceforth MSR) which introduced the 
idea of doubling the number of variables in the problem, leading to the current 
formulation. There have been a number of papers which have rewritten the MSR 
formalism in various ways, see for example Phythian (1977) and Langouche, Roekaerts 
& Tirapegui (1979). We choose to  use the path-integral formalism of Phythian to set 
up the problem. The reason for this is that  there is currently a great deal of activity in 
various areas of physics using path integrals. This will enable us easily to  make use of 
some of their techniques. I n  this paper we will discuss perturbative and self-consistent 
evaluations of the path integral. I n  fact for the approximation we propose, we could 
use directly the original work of Kraichnan (1959) who proposed the direct-interaction 
approximation which has been extensively studied. We refer the reader to  the reviews 
of Leslie (1973) and Orzag (1977). For a similar approximation see Phythian (1969), 
Herring (1965) and Edwards (1964). It is essentially a self-consistent field approxi- 
mation, and, in the language of diagrams, vertex corrections are ignored. The semi- 
classical or WKB approximation is another standard approximation to  path integrals. 
We will not discuss that here, but it does appear that i t  is the appropriate approxi- 
mation for part of the internal-wave field. 

I n  order to  show how such a formalism might shed more light on previous calcu- 
lations we show that a particular limiting case of our model precisely corresponds to 
the results of Hasselmann and consequently indicates how one might improve on the 
calculations of Olbers and McComas. We also show that the formalism splits Hassel- 
mann’s source function into two pieces, which have natural interpretations as effective 
damping and driving forces. This finally leads us to  interpret our model of the internal- 
wave field as a collection of uncoupled, damped oscillators in the presence of random 
driving forces, in the spirit of effective-medium theories found in other areas of physics. 

I n  5 2 we review the derivation of the path integral for stationary random processes. 
I n  $ 3  we discuss the correlation functions and the linear-response functions and the 
direct-interaction approximation. I n  5 4 we interpret the nonlinear problem as an 
effective linear theory with a memory. I n  5 5 we discuss the relationship of our model 
to the results of Hasselmann. I n  3 G we briefly mention the WKB approximation and 
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the important physics that is involved. The final section is devoted to a summary 
and discussion of some unresolved problems. 

2. Path integral 
In this section we will sketch the derivation of the path-integral form of the 

characteristic functional describing the random field. For some of the more technical 
mathematical points we refer to the literature, Phythian (1977) and Langouche et ul. 
(1979). 

As far as is possible we will use the notation of Olbers (1976) for the mode description. 
The equations to be solved are of the form 

AS(k, t )  + iQs(k) As(k, t )  + vo(k) AS(k, t )  

+ 81, sa ~ d 3 k l d 3 k , S 3 ( k - k l - k , ) B ~ $ ~ ~ ~ A s ~ ( k l , t ) A s ~ ( k z , t )  

Here we have introduced the terms vo(k)  As(k, t )  andfs(k, t )  as external damping and 
driving forces on the internal-wave field. The motivation for the particular choice of 
these terms is twofold. The first is that of simplicity - we wish to demonstrate the 
application of the formalism to this problem without introducing complexities that 
might tend to obscure the general ideas. The second motivation can only be seen 
aposteriori. When we subsequently write down the Dyson’s equations for this problem 
it will be seen that new terms appear which have the same formal structure as the two 
‘external’ terms; this leads us to interpret the new terms as ‘corrections’ to the initial 
terms, i.e. as ‘effective’ damping and driving terms. For most modes f and vo are 
negligible and can be ignored. They are just a convenient way of parametrizing the 
coupling of inertial waves to the rest of the world. 

=fs(k,t), s = I. (2.1) 

The amplitudes, mode frequencies and couplings satisfy the relations: 

As(k, t )  = [A-’( - k, t)]“, @(k) = Q-s( - k), (2.21, (2.3) 

The index s is either + n or - n with a+ > 0. The label n is an additional mode index, 
which for internal waves is equal to unity. If an Q appears without the label, it  is taken 
to be Q+. We make the ad hoc assumption that the driving forces &(k, t )  are stationary 
and random with a Gaussian distribution function, 

(f”(k, t)F(k’, 0)  = 6 ( k + k’) SS,-s, Ro(k, t - t’). ( 2 . 5 )  

This particular assumption allows us to obtain closed-form solutions for the path 
integrals that will appear later. Other models for the interaction of the external forces 
with the internal waves could be used, such as random parametric couplings in (2.1), 
but such models are somewhat more difficult to treat. 

The probability distributions for f are specified in terms of its characteristic 
functional C(q5), 

C(q5) = exp { - 4 / d 3 k / d t  dt’ q5-s( - k, t )  @(k, t’) Ro(k, t - t ’ ) } .  (2.6b) 
8 
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The equations are much simpler when expressed in terms of their Fourier transforms, 

m 
Fo(k, w )  = 1 eiWtR(k, t )  dt. 

-m 

With this convention, equation (2.6) becomes 

C($)  = exp [ -$? /d3k/dw qkS( - k, - w )  Fo(k, w )  @(k, w ) ) .  (2.8) 

We are interested in finding the probability distribution for the amplitudes A .  To 
that end we introduce the characteristic functional for .those variables, 

Z(() = (expix /d3k/dtg-S( - k, t )  As(k, t ) )  
8 

or in terms of the Fourier-transformed amplitndes 

Z(g) = (exp [27rix Jd3k]dwf-s(  - k, - w )  A5(k, w ) ] ) .  (2.9) 
S 

The angle brackets refer to averaging over the distribution for f. They are given 

(2.10) 

where W ( f )  is the probability distribution function for f and is just ,the Fourier 
transform of C. The integral is a functional integral in that we are to integrate over all 
possible functions f (k, t )  for each mode k.  One way to achieve this is to discretize k 
and t and integrate, 

(2.11) 

For the purposes of this paper it is not necessary to be specific and Phythian ( 1  977) can 
be consulted for more details. The idea now is to replace W (  f) by its Fourier transform 
C($)  and to change variables from f to A using (2.1): 

( X )  = S X  23A 234 C($) exp { - Q ]d3k Idt $+( - k, t)f"(k, t ) } ,  (2.12) 
S 

where it is understood that f is to be replaced by 

fs(k, W )  = { - iw + iQs(k) + Yo(k))AS(k, W )  

+ ~~d3kld3k2t33(k-kl-k,)6(w-wl-w,) 
81 so 

x Asl(kl, wl) AS2(k2, w2)  B I ~ ; ' ~ .  (2.13) 

The driving function f has disappeared from the problem and its characteristic 
functional C ( $ )  has appeared. There are now two functional integrals, 9 A  and 294 
and the Jacobian 9 f / B A  in place of 9f. The Jacobian can be evaluated (Phythian 
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1977; Langouche et al. 1979) and is given formally by 

(2.14) 

It has been shown (Langouche eta,?. 1979; Dominicis & Peliti 1978) that,if diagrammatic 
perturbation theory is used, the Jacobian cancels ‘tadpole ’ diagrams and both the 
tadpoles and the Jacobian can be omitted. See the appendix for a discussion of this 
point. 

We now extend the definition of the angle brackets to include $ functionals as well 
as AS(k, w )  functionals, 

x exp { - 2ni 

The generating functional introduced in (2.9) is now extended to include $, 

Z($, 7) = (exp (2ni C Jd3k/dw [t”( - k, - w )  As(k, w )  + T - ~ (  - k, - w )  @(k, w ) ] ) ) .  (2.16) 

As we are presumably interested in correlation functions of AS(k, w )  which can be 
obtained by differentiation with respect to 5, it seems unnecessary to introduce 7. 
However, the field 4 (and hence 7) plays a crucial role in defining a response function 
and in simplifying the perturbation series. To demonstrate this we imagine replacing 
f-+ f + e in the equation of motion. This shows up in (2.15) as an additional factor in 
the integral 

exp{+2ni 2 /d3kJdw$-s( -k,  -w)es(k,w)} .  

If we expand this to first order in e and consider the change in { A )  we see that 

Id3kdw $-s( - k, - w)fs(k, w ) } .  (2.15) 
8 

8 

8 

) = 2ni(AS(k, w )  f(k’, w ) ) ,  ( 8e-S‘( - k’, - w ’ )  

which can also be written 

( se!yk’ t ,  ) = i(A8(k, t )  f(k’, t ‘ ) ) .  
8’ - k’, t ’ )  

(2.17) 

(2.18) 

Thus the term on the right-hand side of (2.18) gives the linear response of AS(k, t )  to 
a known perturbation. It is linear only in the sense that e is treated to first order. The 
rest of the dynamics is nonlinear. Response and correlation functions are calculat’ed 
by taking the appropriate functional derivatives of 2, for instance 

The standard trick used todevelop perturbation theoryis to notice that, if the theory 
were linear, all of the integrals in (2.16) could be obtained exactly. In the actual case 
the factor preventing exact analytical integration is given by 

exp { - 2ni /d3kd3k,d3k2 S(w - w, - w 2 )  83(k - k, - k,) 
8 ,  81. SP 
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1 6 As(k, W )  + - 
2ni SE-"( - k, - W )  

1 6 
and each # by 

# S ( k  w )  -+ - 2ni ST-'( - k, - W )  ' 
then 

Z(5, q) = exp (( &) /6 (w,  + w2 + w3) a3( k, + k, + k3) dw, dw, dw, d3k, d3k2 d3k3 
2 

(2.20) 

The t,erm Zo(5, q) is obtained from (2.15) and (2.16) by finding all of t'he integrals now 
that the nonlinear piece has been removed. The result is 

(2.21) 

The new functions D are 

DS(k, W )  = v,(k) + iQ"(k) - i ~ ,  D+(k, W )  = [D-( - k, -@)I*. (2.22) 

We can now write down a diagram expansion for the perturbation series. We do 
that in the next section. 

I n  principle quantities of interest can be calculated directly from (2.15) without 
resorting to the perturbation theory that follows from (2.20). Currently there is a 
major effort aimed a t  extracting non-perturbative information directly from path 
integrals describing a wide variety of physical phenomena. As those methods tend to  
be difficult to  implement, we propose to  first test the SCFA (DIA). There are a number 
of quantities of interest for the internal-wave field. However, there is relatively meagre 
information on higher moments so in this paper we will be primarily interested in the 
two-point functions, 

I 
1 

1 - U"'(k, W )  63(k+k') ~ ( w + w ' )  = (A"(k, w)A5'(k', u')),  
2n 

Oss'(k, t )  @(k+ k') = (As(k, t )  As'(k, 0)), 
and 

1 
- Gs"(k, W )  S3(k+ k') S(W + w ' )  = i(As(k, W )  p'(k', OJ')), 
27T 

dss'(k, t )  63(k+ k') = i(As(k, t )  @'(k', 0)). 

The definitions of U and G lead to  some important symmetry properties: 

U"'(k, 0) = [U--S--S' ( - k, - w ) ] " ,  USs'(k, W )  = Us'"( - k, - w ) ,  

GS"'(k, W )  = [G-'-S'( - k, - o)]*.  

(2.23) 

(2.24) 
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3. Perturbation theory 
In  this section we will exhibit the general structure of the two-point functions and 

discuss briefly the diagrammatic perturbation theory. We begin by listing the free 
Green’s functions and correlation functions, and we will then point out the general 
features that the exact functions will have. The free correlation function is defined by 

1 
- U:(k,w)S3(k+k’)S(w+w‘)SS,-, 
2n 

= (AS(k, W )  A” (k’, w’)) ,  

The free-response function is given by 

1 - C:(k, W )  S3(k + k’) S(W + 0’) S,,+, 
2n 

= i(As(k, W )  @’( k’, w ‘ ) )  

1 1 
=-  S3(k + k’) S(W + w ’ )  Ss,-s,. 

277 v,(k) + iQs(k) - iw 

If Fo is independent of w ,  the corresponding time-dependent functions are 

The exact functions will have the same structure as that exhibited in (3.1) and (3.2), 
except that Fo, v, and Q will be replaced by new functions that depend on w .  To the 
extent that the w dependence of the effective f ,  v and 0 can be ignored, (3.3) and (3.4) 
are exact. The w dependence will modify a t  least the short-time behaviour. If the 
singularity nearest the real w axis remains a simple pole, the long-time behaviour will 
have the structure of (3.3) and (3.4). We now proceed to develop the perturbation 
scheme to calculate the effective f, v and Q using standard diagrammatic techniques. 
We list the rules for calculating diagrams: 

(a,) There are two kinds of propagators, one corresponding to correlation functions 
and the other to response functions. Each line carries an s, k, and w .  The response 
functions have an arrow associated with them, and we will conventionally take the 
quantit,ies s, k and w to flow with the arrow. The lines and their corresponding functions 
are shown in figure 1. 

( b )  Each vertex has exactly one line with an arrow pointing toward the vertex and 
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-F(k)  s, k ,  w+ - ~ _ _ _ _ _  - 
D-'( -k ,  -w)  DS(k,  W )  

FIGURE 1. Lines representing response function and correlation function. 

FIGURE 2. Lowest-order vertex function. The line with the incoming arrow is the first argument 
Bk,--krkp 8 1 - ' ~ B ~  x 63(k, - k, + k3) x &(w, - w2 + us). 

FIGURE 3. Lowest-order graph contributing to the correlation function, U .  
Because of it)s symmetry there is a factor of 4 associated with it. 

. - - - - t - - - = - +  

= .+ .+@-+- 
FIGURE 4. Dyson functions for the two-point functions. 

two other lines that either have arrows pointing away from the vertex or no arrows. 
In figure 2 we show a vertex which has associated with it the factor 

The first pair corresponds to the arrow in the diagram. Bissymmetricin theotherpairs. 
(c) All internal s, k and w's are summed over. 
(d )  For Nth-order perturbation theory, draw all topologically distinct diagrams. 

Graphs possessing a symmetry have a symmetry factor ; for example the graph of 
figure 3 gets a factor of +. 

( e )  Each diagram gets a factor (27r)-*(N+Ne). 
(f) Each external A field gets a factor of (-i). (The extra i here is because the 

response function is i(A#),  see ( 3 . 2 ) . )  
We mention that, if vertices with more lines are present, the only rule that ischanged 

is ( e ) .  Each vertex will still have only one line with an arrow pointing into it. 
The Dyson equations have been given by MSR. For completeness we show them in 

figures 4-6. Note that, although there is only one kind of bare vertex, there are 
three kinds of renormalized vertices which are shown to lowest order in figure 6. 
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FIGURE 5 .  Equation for C, and C, in terms of renormalized vertices. 

+ p+ + - - -  

FIGURE 6. First terms in expansion of vertices. 

Finally, it  can easily be shown that any graph containing a closed loop whose lines are 
entirely response functions (arrows) is identically zero. 

The Dyson equations are easily solved to give 

Gss'(k, W )  = [D-'(k, W )  as,+.* - iCy'(k, w)]-' 

U"' = Gs"(k, W )  [Fo(k, W )  Ssl,-sa+ Cp(k ,  w ) ]  Gs'Sz( - k, - W )  

(3.5) 

(note that this is a 2 x 2 matrix equation). The correlation function is given by 

(3.6) 

(implies summation over sl, 8,). 

If vertex corrections are ignored (direct interaction approximation) then we have 

C, has the same symmetry properties as U and iCl has the same as G. 
One of the assumptions of weak-interaction theory is that the diagonal elements of 

U and G can be ignored. U and G are assumed to have the form Us"' = Us6 s,-s" The 
corresponding statement for C is Cs = CpSs. 
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@ =  f -e- 
FIGURE 7. Graphs for C for four-wave interactions. 

We now comment briefly on the application of these techniques to surface waves. 
The principal difference is that the equations involve four-wave coupling, that is 

B x A x A x A  
there is a term 

in the equation of motion, (1 .1  ). The term involving only two A's is still there, but it 
is not possible to have three-wave resonances. This means that in (3.12) the limit 
Y -+ 0 gives zero and the answer must come from finite v which presumably gives a 
small contribution. In  any case if we replace the B A A  terms by B A A A  in (2.1) we 
obtain a very similar theory. The graphs for C are shown in figures 7 and they are to be 
solved self-consistently with the diagrams of figure 4. The number associated with a 
vertex is now 3! instead of 2!. There are some additional (277) factors. The net effect is 
to change rule ( e ) ,  

and rule ( b )  gets a factor of i for each vertex. These two changes can be stated in a way 
that is easily generalized. If there are NA A fields a t  a vertex, the vertex has associated 
with it ( i N ~ + l ) N A ! .  Each closed loop has associated with it an integral Jdw f2n. 

(2!)N (277)-4"+N4.+ (3!)N (277)-tNe+N, 

4. Linear effective medium 
I n  this section we shall elaborate on the effective medium picture and discuss the 

direct-interaction approximation and the relationship to the theory due to Hassel- 
mann. We will first remind the reader of a few simple properties of linear systems, and 
compare these with our effective medium. The simplest situation assumes no memory 
and is given by 

which is (2.1) with B = O  and the mode index E ignored. If we define 

As+i!25A5+~As =f"( t ) ,  (4.1) 

8(t, t ' )  = (A*(t)  A(t ' ) ) ,  ( 4 4  

then in the steady state U depends only on t - t' and is given by 

If we calculate dU(t ,  t ) /dt  we obtain 

dO(t , t ) /d t  = -2d?(O)+F = 0,  (4.4) 

where P is given by (2.5) and (2.7). This just represents the balance between the driving 
forces and the dissipative forces. We now compare with the correlation function 
obtained in the previous section, 
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We have suppressed the mode index k. If Cl, Cz are approximately independent of 
w ,  then it is clear that real C1 is a frequency shift and 9 C l  is an effective viscosity 
representing loss to the other modes. This particular interpretation may be somewhat 
misleading, however. Consider the case where the mode in question is Doppler-shifted 
because of passage through an inhomogeneous medium (large-scale wave). I n  this 
case we would formally say that one mode has been damped while another mode of 
neighbouring wavenumber has grown. I n  reality of course we are just seeing the 
original wave with a slightly different frequency. 

In  addition to the ‘effective damping ’ term there is also an effective driving force 
due to the other modes and its correlation function is Cz, The correlation function for 
the total driving force is thus Cz + F,. 

Now in general C, and Cz will depend on w.  In this case it is easy to see that the 
equation giving the evolution of the amplitudes is given by 

A @ ) + / ”  -ca P(t-t’)A(t’)dt‘ = f ( t ) ,  f(t) = 0,  t < 0. (4.6) 

(0 9 (4.7) 

If we write 
A 

then we see that r * ( w )  is analytic in w for 9 w  > 0. The corresponding response 
functions are 

which leads to an obvious int,erpretation of C$(w),  

The fact that G ( t )  = 0 fort < 0 (causality) implies that there are no zeros of r(w) - iw 
in the upper half-plane. Because of these analytical properties of G and r, Kramer’s 
Kronig dispersion relations can be used to calculate the real part of G and Z once the 
imaginary part is known (or vice versa). 

The equilibrium condition relating the energy, dissipation and driving forces is 
obtained by evaluating 

5. Relationship to previous results 
I n  this section we obtain the results of Hasselmann as a special case of our model 

equation. The limiting assumptions made in obtaining the results provide a more 
transparent way to check the validity of the assumptions inherent in Hasselmann’s 
equation; in the end of this section we indicate where improvements could be made in 
his scheme. 

To obtain the results of Hasselmann one performs the following operations on 
(3.7) and (3.8) (using only Cs = 2-ss). 



294 €2. J .  De Witt and J .  Wright 

(1) Assume that Fa, C,, and C, are independent of w and perform the w1 and IC), 
integrations. For example, defining v(k) = vo(k) + $C,(k), we get 

~ d w , d o , S ( w - w , - w , )  [v(kl),+ (Q(k,) - ~ , ) ~ ] - ~ [ v ( k , )  +iQ(k,) -iwz]-l 

ni 
=- [w - Q(k1) - Q(kJ - i(V(k1) + v(k,))l 

v(k1) 
x [ ( ~ - R ( k l ) - Q ( k z ) ) ' + ( ~ ( k , ) + ~ ( k , ) ) ~ ] - ~ .  (5.1) 

(2) Take the limit Fo, vo, C,, C,+O (in such a way that O(k, 0 )  = F/2v is main- 
tained). Then (5.1) becomes 

where 9 represents a principal part integral. When the actual structure of the B 
coefficients is considered it is easily seen that the delta function contributes to v ( k )  
and the principal part to a frequency shift. The Dirac delta function has come from 
the limit 

(5.3) 

and we call the function on the left-hand side the frequency filter for the problem. 
Such a function w a  earlier obtained by Holloway & Henderson (1977) and Holloway 
(1978, 1979), where he also noted the RIA as a limiting case. This is the first indication 
of a possible improvement in the calculations of Olbers and McComas. What they did, 
in essence, was t'o assume that v was small compared with typical oscillation fre- 
quencies and then calculated values of v on the order of or even greater than the 
frequencies. The earlier assumption of neglecting the diagonal elements of U, G 
corresponds approximately to assuming v /Q  < 1. 

Equations (3.7) and (3.8) must be solved self-consistently, however, so that values 
of v(k) used for input on the right-hand side are the same as those obtained on the 
left-hand side. Unfortunately solving these equations self-consistently does involve 
integration over one more variable, and so may require an inordinate amount of 
computer time (the two-dimensional integral is already relatively time-consuming). 

Having now carried out the limiting process, we are ready to make a detailed com- 
parison with the source function of Hasselmann, which he writes as 

Y = I d3k, d3k, (T+S3(k - k, - k,) S(Q - a, - Q,) [n,n, - nn, + anz] 

+ 2T- S3( k - k, + k,) 6( Q - Ql + Q2) [nl n2 + nn, - nn,], (5.4) 
where 

n(k) S(k+ k') = (A+(k, t )  A-(k', t ) )  
fi(k)' 

We split Y into two pieces, 

K(k)  = Id3k, d3k, {T+G(k - k, - k,) 6(Q - ill - Q,) nlnz 

and 
+ 2T-S(k - k, + kz) S( SZ - + Q,) n, n2} (5 .5 )  

Y = 9,-9,. 
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s-l, ( I )  2.2 x 

We find the following identifications, 

and 

where 8 is defined in (2.23), Xz is the effective force due to all other modes, and F is 
the total force, 

F(k) = Fo(k) +C,(k). ( 5 . 8 )  

From equation (4.4) we have, in the stationary state, 

F = + 2 ~ 8 ( k ,  0 )  = Fo(k) +C,(k) 
or 

(5.9) 

(5.10) 
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9. Plots of b2(k) ws. rn for various frequencies. 

From this equation we see that the calculations of Olbers and McComas give the 
coupling to external systems in terms of the difference between an effective force and 
an effective viscosity. 

Earlier we noted the breakdown of the resonant-interaction approximation (RIA) 
because of the large values of v(k) in some regions of the internal-wave spectrum. We 
would next like to test the assumptions that C, and C2 are independent of w .  We 
consider first the case of El. In  order to ascertain whether the non-resonant structure 
of C1(w) might have any appreciable effect on the values computed in the right-hand 
side of (3 .7)  we choose a particularly simple form of XI:  

-iC,(k,w) = a(k)+ (~-Q(k))b(k) ,  (5.11) 

where both a(k) and b(k) are assumed real. If the C, = constant assumption is 
warranted we should expect to compute very small values for b(k). For the present 
we still assume that C2 = constant and use the RIA. The effect of b(k) is to reduce the 
residue of the pole of G from 1 to  1/( 1 + ib) and to decrease the damping from v = a 
to  v = a / ( l  + b2) .  The correlation function is reduced by the same amount: 

We wish to check the size of b numerically. We take o(k,  0) to be given by GM76, a 
recently revised version of the Garrett-Murk spectrum (see McComas & Bretherton 
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1977). The coupling coefficients used in the calculation are derived in the same manner 
as those given by McComas. 

We have computed values of a(k) and b(k) by assuming that both were initially 
zero (i.e. just C,+O as before), and then iterating (3 .7)  once. Values of a(k)/Q(k) 
and b2(k) are shown in figures 8 and 9 respectively. We first note the previously 
mentioned fact that the values of a(k) for much of the spectrum violate 

a(k)/(Q(k)/2n) < 1. 

The dashed line corresponds to a(k)/(Q(k)/2n) = 1. The RIA assumes that Q 9 a ;  
that condition is clearly violated here. We further note that an examination of figure 9 
reveals values of bz(k) that are extremely large for much of the spectrum. This clearly 
violates the assumption that C, is constant in w. We conclude that any reliable self- 
consistent calculation must include information on the non-resonant structure of &. 
It should be noted, however, that  the simple linear form of El, chosen here to test the 
constant - C, assumption, is wholly inappropriate for a serious calculation. 

Finally, we can also determine the validity of the assumption that C, is constant 
in w .  When we actually compute X2(k,W) we find that C, actually does possess an 
appreciable structure wibh a finite width in w. However it is not sufficient merely to 
calculate C, for various values of w ,  since frequency filter cuts-off may allow only 
values of C, from a narrow band around resonance to enter the calculation. I n  that 
case C, may be considered eflectively constant. One way to circumvent this is to 
compare the functions 

and 
R(t) = / d o  eiot C,(w) .  

We note that C, always appears in the equations through U ( w ) ,  which contains 
information on the width of the frequency filter as well as on the width of C,. On the 
other hand R ( t )  contains information on the width of 2, only. We envision two possible 
extreme cases. In  one case Y is extremely small, so that the frequency filter becomes a 
resonance delta function and U ( t )  assumes the form earlier obtained by assuming 
C, = constant. On the other extreme, v might be so large that the width of the fre- 
quency filter would be much larger than the width of X,. In this case we would expect 
the shapes of U ( t )  and R ( t )  to be identical. The calculations that we have performed 
indicate that both extreme situations do indeed obtain in different regions of the 
spectrum. Figure 10 shows the first case. Here C, is constant and U ( t )  cr einte-”ltl. 
If Z2 were actually constant, however, R(t) should be a delta function in t .  In  actuality 
we see that R ( t )  does have some width, indicating that X2 is not constant but that the 
variation is unimportant in the calculation. On the other hand figure 11 shows the 
case where, appropriately scaled, U ( t )  and R ( t )  are identical, indicating large values of 
v(k). In this region, then, not only is the RIA very bad, but also the assumption that 
C, = constant must be dropped if the frequency filter correction is to be used. 

We have also calculated X,(w) and from it the response function to verify directly 
that the frequency dependence of C, is important for some modes. 

In  general, then, we conclude that any self-consistent calculation of C, and C, in 
the region where Olbers and McComas found inconsistencies in their calculations must 
necessarily include (1)  a frequency filter function to relax the RIA, and (2) non-resonant 
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information on XI and C,. Unfortunately this greatly increases the difficulty of the 
numerical solutions of the problem, since it requires an extra integration over w ,  
including a principal part integral that  has not been present in earlier calculations. 
I n  addition, the equations must be solved self-consistently, implying an  iteration 
process on an already time-consuming calculation. We are currently attempting a 
simplified version of the self-consistent calculation. 

6. WKB approximation 
I n  the introduction we alluded to  other approximations to the path integral. One 

of the failings of weak interaction theory can be traced to  the interaction of two small- 
scale high-frequency waves with a large-scale inertial frequency wave. This interaction 
has been called induced diffusion by McComas & Bretherton (1977) .  It is appropriate 
to think of it as t’he effect of advection of the small-scale wave by the inertial wave. 
This picture suggests studying the propagation of a small-scale wave packet in the 
geometric optics approximation including the effects of a time-varying background. 
The aim would be to calculate a coherent decay time. The time scales of the response 
functions in the induced diffusion region are dominated by processes that leave the 
wave packet coherent, although somewhat altered. 

7. Summary 
We have written this paper with a twofold purpose. In  the first part of the paper we 

have introduced a formalism for solving nonlinear equations of the type encountered 
with internal waves. Prom experience with self-consistent field treatments in other 
areas of physics we very well might expect such methods to be helpful in extending 
calculations beyond some of their inconsistencies. To this end we have taken a 
simplified steady-state model of the oceanic internal wave field and obtained via path 
integral methods the corresponding diagrammatic perturbation theory from which 
Dyson’s equations can be obtained. In  the process we have suggested as interpretation 
of the ocean as a collection of uncoupled, damped oscillators driven by random forces 
and each having a memory. I n  this case we used the direct interaction approximation 
of Kraichnan, which is easily implemented in the diagrammatic language. We should 
note that one problem with this approach is that  it is not currently known what kind 
of approximations guarantee the positivity of quantities like the effective viscosity 
and also guarantee coiisistency in the Green’s function sum rule. I n  turbulence 
problems it has been possible to construct models of fictitious systems that satisfy the 
DIA exactly, thus guaranteeing the appropriate positivity. However this approach 
is of very limited usefulness and it is not known how to extend i t  to other approxi- 
m ations. 

In  the second part of t,he paper we have obtained the previous results of Hasselmann 
via a prescribed limiting process. The particular assumptions inherent in the process 
were checked and found to break down in the region where Olbers and McComas found 
inconsistent results in their calculations. We suggested that the calculations might be 
improved by solving equations for C, and C, self-consistently, but that the imple- 
mentation of the procedure might be quite difficult. 

Tn conclusion, we feel that, the formalism of the type discussed here should be 
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FIGURE 12. Tadpole graph wit,h response function integrated. 

FIGURE 13. Tadpole graph with correlation function integrated. 

studied further for its possible application to the internal wave problem. The prelimi- 
nary calculations indicate ways to correct for deficiencies in earlier calculations, but 
further work is needed to  formulate positively constraints and related constraints. 

This work was supported in part by the Navy SBC, Johns Hopkins University, 
APL 601103, and by the Office of Naval Research, N00014-80-C-0840. 

Appendix 
We discuss briefly the role of the Jacobian (equation (2.14)) in cancelling some 

tadpole graphs. We will illustrate the cancellation by considering the expectation 
value of A(k, w ) ,  which should be zero. There are two graphs contributing t o  (A(k, w ) )  
and they are shown in figures I2 and 13. If we work to lowest order in B, the Jacobian 
gives the contribution 

where (AA),  is given by (3.1).  Using the rules given in the text it is easy to calculate 
the contribution of figure I2 and verify that it cancels (A 1) .  The graph shown in 
figure 13 vanishes for another reason. It is easy to see that it is proportional to 

C /d3k,do1 B$lSk Ug(kl, wl) 
1 

Ds(k = 0, w = 0) s1 

and 

When these graphs are inserted into more complicated graphs they will continue to 
give no contribution. Similarly more complicated tadpoles (vertex corrections of 
figures 12 and 13) will continue to vanish. 

Biz; = 0. 
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